Monthly Archives: September 2013


EPA Proposes New Carbon Rules

Recently the EPA proposed to place limits on the carbon pollution from new fossil fuel power plants, which would be required not only to capture some of the carbon dioxide produced, but also to produce a smaller amount in the first place.

The regulations include:

• Coal plants having a 500 kg per megawatt hour of producing power limit on carbon dioxide pollution.
• Natural gas plants limitations of just over 450 kg per megawatt hour of pollution of carbon dioxide.

Opposition to this was expected to be strong, with companies stating that implementation of these regulations would not be commercially feasible. The first version of the rules alone received a staggering 2.5 million comments before removal to address procedural issues.

Some experts believe that these new rules could help the U.S. economy progress to a low carbon future, and with the slow integration over 7 years of these standards that this was very do-able.

An additional flexibility that the EPA stated would be that plants would have to collect a portion of their carbon pollution. While advocates in the industry have argued that this change will be necessary for fighting climate change, the research and development is still in a very early stage.

On top of this, the power industry is shifting towards natural gas to generate electricity, which could mean that the market for plants with included carbon-capture equipment could be as far as decades away.

Read more:

Carbon Capture and The Future of Coal

The EPA on recently announced new regulations that would see a limitation on the amount of carbon produced by new power plants in the U.S. These rules would allow sustainability for the coal industry by implementing the expensive, albeit early-stage carbon capture technology as a means of a cleaner future. The innovation of this technology isn’t the only hurdle though, with market demand potentially posing a problem.

Power Station

 

While many think this is a positive move by the EPA, coal industry companies argue that this will only stifle innovation into clean-coal technology. Further statements argue that this expensive and energy-intensive technology could reduce the total power generation of their plants by a staggering 30%.

Despite these regulations and the hopes of the EPA, the future for this technology looks grim. The cheap and bountiful resources of natural gas alone threaten to make coal obsolete, and without a market for coal there would be a similar effect on the technology for carbon capture and storage. This doesn’t stop the motivation of some natural gas companies however, who anticipate the integration of these rules in future and have started to begin innovation with CCS.

For more information, read here: http://www.csmonitor.com/Environment/Energy-Voices/2013/0920/New-EPA-rules-Coal-s-future-depends-on-cheap-carbon-capture

Understanding Carbon Capture and Storage

Carbon capture and storage is the process of capturing the carbon dioxide that is produced from large scale carbon generating operations.  This would typically be power plants that burn fossil fuel or biofuel to generate electricity.  Larger scale industrial process also generate massive amounts of carbon dioxide and are therefore also prime candidates for Carbon Capture and Storage (CCS) technologies.

Carbon Capture

CCS technologies, when effectively deployed can result in the capture of up to 90% of CO2 that would otherwise be released into the atmosphere.  Such technologies when used with renewable biomass fuel sources can actually result in a carbon-negative process for generating energy.

The CCS process can be broken in to three primary phases:

  • Carbon Dioxide Capture Techniques – This involves intervention at the point in which the carbon is produced at a power plant or industrial plant.  The CO2 is separated from the other gases created in the process of generating electricity or other production processes.  This is done by one of three primary methods: pre-combustion capture, post-combustion capture and oxyfuel combustion.

Carbon Capture at Source

  • Carbon Dioxide Transpiration Techniques – CO2 captured at the source of production can be transported by a number of methods including pipeline, ship, and road tankers.  The process is similar to that of transporting natural gas or oil.  The infrastructure requirements for transporting captured CO2 and natural gas are similar.

Tanker

  • Carbon Dioxide Storage Techniques – Once transported, carbon dioxide is stored in liquid form.  Typically, it would be stored in large geological formations miles underground. Often old depleted gas or oil fields can be used for CO2 storage.  CO2 can also be used at existing but depleting oil fields.  There the CO2 might be injected to increase oil recovery in a process called “enhanced oil recovery”.  Approximately 30 to 50 million metric tonnes of CO2 are injected annually in the United States into declining oil fields.

Safe underground storage of Co2 relies on a mechanism know as structural storage    whereby an impermeable layer of rock known as cap rock  traps the CO2 underground.  This impermeable layer of rock prevents the CO2 from escaping above ground and entering the atmosphere.